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SUMMARY
We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475
tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer,
we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1 (epigenetically-
induced lncRNA1). Overexpression of EPIC1 is associated with poor prognosis in luminal B breast cancer pa-
tients and enhances tumor growth in vitro and in vivo. Mechanistically, EPIC1 promotes cell-cycle progres-
sion by interacting with MYC through EPIC1’s 129–283 nt region. EPIC1 knockdown reduces the occupancy
of MYC to its target genes (e.g., CDKN1A, CCNA2, CDC20, and CDC45). MYC depletion abolishes EPIC1’s
regulation of MYC target and luminal breast cancer tumorigenesis in vitro and in vivo.
INTRODUCTION

The most recent genome-wide characterization of the human

cancer transcriptome has demonstrated that lncRNA expression

is among the most pervasive transcriptional changes in cancer

(Du et al., 2013; Iyer et al., 2015). Further experimental evidence

indicates that lncRNAs can play important roles in tumorigenesis

(Du et al., 2016; Prensner and Chinnaiyan, 2011; Schmitt and

Chang, 2016; Zhu et al., 2016). Similar to protein-coding genes

(PCGs), lncRNA expression is subject to changes in gene dosage

(e.g., copy-number alterations) and promoter utilization (e.g.,

DNA methylation) that occur in cancer initiation and progression.

In this regard, lncRNA genes can be targeted by cancer somatic

alterations and thus play important roles in tumorigenesis. Recent

studies focusing on the identification of copy-number alterations
Significance

Although global epigenetic alterations have been established a
lncRNA loci and their consequences in cancer development re
ization of epigenetic landscape of lncRNA genes in 20 cancer
rently epigenetically activated in tumors by hypomethylation
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706 Cancer Cell 33, 706–720, April 9, 2018 ª 2018 Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://
(Hu et al., 2014; Leucci et al., 2016; Yan et al., 2015) and cancer

risk polymorphism in promoter regions (Guo et al., 2016) of

lncRNA genes have provided evidence demonstrating that so-

matic/germline alterations of lncRNA in tumors can be ‘‘driver

molecular events’’ leading to tumor initiation and progression.

Epigenetic regulation is one of the major mechanisms utilized

to control lncRNA expression and tissue specificity (Amin et al.,

2015; Guttman et al., 2009; Wu et al., 2010). Epigenetic

alterations have been established as one of the hallmarks of

tumorigenesis (Jones and Baylin, 2002; Shen and Laird, 2013).

However, the epigenetic alterations of lncRNA genes and their

consequences in cancer remain poorly characterized.

Genome-scale studies have yielded important insights into

DNA methylation changes in tumors (Irizarry et al., 2009; Noush-

mehr et al., 2010) but have mostly focused on PCG promoters.
s a prominent cancer hallmark, the epigenetic abnormality of
main poorly characterized. We report an in-depth character-
types and discover that the expression of lncRNAs is recur-
. This study provides an integrative strategy of identifying
ave identified and validated EPIC1 as an oncogenic lncRNA
e progression. These discoveries expand upon the known
o develop therapies that target MYC through its interaction
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Figure 1. LncRNA and PCGs Have Distinct

DNA Methylation Patterns in Ten Cancer

Types

(A) Weighted density plot (kde2d.weighted

[package: ggtern]) of differential DNA methylation

(indicated by FDR values) of 100 windows

within ±1,000 kb from transcription start sites

(TSSs) are shown in breast cancer tissues. The

windows are arranged based on their distances

to PCG TSS (x axis) and lncRNA gene TSS (y axis).

The promoter region is defined as ±3 kb (white

dashed lines) from TSS. The hypermethylation

region in tumor is shown as red, whereas the

hypomethylation region is shown as blue. The

average H3K27ac and H3K4me3 binding in-

tensities are shown along with the x and y axes.

(B) Differential DNA methylation between tumors

and matched normal tissues in nine cancer types.

(C) Distribution of the differential DNA methylation

weighteddensityvalues (kde2d.weighted [package:

ggtern]) within ±3 kb region (white dashed lines) of

PCG TSS (left) and lncRNA TSS (right) in ten cancer

types. NS, not significant.

See also Figure S1 and Table S1.
The efforts to characterize the lncRNA epigenetic landscape in

cancers have labored under the limitations of an imperfect anno-

tation of lncRNAs and a dearth of platforms that can detect

lncRNA epigenetic and expression alterations in cancer. The

emergence of large-scale cancer genomic/epigenetic projects,

such as The Cancer Genome Atlas (TCGA) Research Network

project, have provided an excellent opportunity to characterize

the lncRNA epigenetic landscape in cancer.

Here, we repurposed and integrated multi-dimensional

genomic and epigenetic data from TCGA, Cancer Cell Line Ency-

clopedia (CCLE) (Barretina et al., 2012), and Catalog of Somatic

Mutations in Cancer (COSMIC) (Iorio et al., 2016) projects to

characterize the DNA methylation landscape of lncRNA genes

across 33 cancer types. We aimed to build a detailed knowledge

base and data analysis pipeline to explore DNA methylation

alterations of lncRNA promoters in cancer. We hypothesize that,

if some lncRNAgenesare recurrently targetedbyDNAmethylation

alterations in tumors, theymayplayan important role in tumor initi-

ationandprogression.By further integratingwith theTCGAclinical

data and somatic alterations of well-documented cancer genes,

we targeted to identify and mechanistically validate lncRNAs

that may have a tumor-promoting or tumor-suppressing function.

RESULTS

LncRNA Promoters Exhibit a Distinct Pattern of
Epigenetic Alterations in Cancer Compared with PCG
Promoters
To interrogate lncRNA DNAmethylation in cancer, we developed

a computational pipeline to repurpose HM450 probes to lncRNA

promoters (Figures S1A and S1B). This analysis resulted in a
set of 225,868 probes annotated to

28,366 genes. Specifically, 66,832

HM450 probes were annotated to 9,606

lncRNA genes (29,117 CpG islands),
comprising approximately 60.4% of all lncRNAs in ENCODE

annotation (Table S1). The lncRNAs that had at least one HM450

probe covering their promoters included 3,964 intergenic and

4,053 antisense lncRNA genes (Table S1). The median distances

between lncRNA promoters and their nearest HM450 probes is

1,267 bp. The identified DNA methylation probes are mainly

located within 3 kb regions of H3K4me3 and H3K27ac peaks of

their mapped genes (Figure 1A) (ENCODE Project Consortium,

2012), suggesting that the probes indeed represent the promoter

methylation status of lncRNAs and PCGs (Shlyueva et al., 2014).

We first sought to determine the lncRNA DNA methylation

pattern in cancer by comparing the DNA methylation profile of

lncRNA promoters between tumors and normal tissues using

the TCGA Pan-Cancer database (syn4382671, Table S1).

Because the CpG island hypermethylation phenotype (CIMP)

has been established as one of the hallmarks in many cancer

types (Baylin et al., 1986), we originally expected to identify

hypermethylated tumor-suppressing lncRNAs. Intriguingly, we

observed both hypermethylated and hypomethylated lncRNA

promoters in breast cancer tissues (Figures 1A and S1C). This

observation is in stark contrast to the PCG promoters, which

werepredominantlyhypermethylated inbreast cancer (Figure1A).

Of the intergenic lncRNAs that donot sharepromoterswithPCGs,

there were 504 intergenic lncRNA promoters showing significant

hypomethylation and 639 intergenic lncRNA promoters showing

significant hypermethylation in breast cancer (false discovery

rate [FDR] < 0.05 and effect size > 0.2). The hypomethylation

pattern of lncRNA promoters was consistently observed in

another nine cancer types that also had matched normal tissues

available (Figures 1B and S1D). To determine if this observation

was an artifact due to bias of the HM450 microarray design, we
Cancer Cell 33, 706–720, April 9, 2018 707



DA

EPIC1
MIR4666A
LINC00944
LINC00668
LINC00884

RP11−539E17.5
LINC00941

RP11−608O21.1
AK023033

CTD−3010D24.3
BC005081
LINC00460
MFI2−AS1

RP11−556E13.1
LOC102724297

SNHG12
BOLA2
MINCR

RP11−278L15.2
AC098973.2
AF186192.1

ZNF667−AS1
RP11−259O2.1
CTB−41I6.2
AK125737
LINC01197
HHIP−AS1
RP11−74E22.3
DPP10−AS1
CTD−2298J14.2

DIO3OS
RP3−412A9.16
LINC01158

BOLA3−AS1
FGF14−IT1
LOC100049716

SNHG18
HAND2−AS1
AC006026.13
CERS3−AS1

High reliability
ES lncRNAEA lncRNA

Intermediate
 reliability

High reliability
Intermediate
 reliability

BL
C

A
BR

C
A

C
ES

C
C

R
AD

G
BM

H
N

SC
KI

C
H

KI
R

C
KI

R
P

LA
M

L
LG

G
LI

H
C

LU
AD

LU
SC

PA
AD

PR
AD

SK
C

M
ST

AD
TH

C
A

U
C

EC

BL
C

A
BR

C
A

C
ES

C
C

O
AD

D
LB

C
ES

C
A

H
N

SC
KI

R
C

LC
LL

LG
G

LI
H

C
LU

SC
M

M
O

V
PA

AD
PR

AD
SA

R
C

SK
C

M
ST

AD
TH

C
A

Expressed Not expressed
ES lncRNAEA lncRNA

CB

AF186192.1 CTD−2298J14.2

DNA methylation beta value

R
el

at
iv

e 
ex

pr
es

si
onEPIC1

R
el

at
iv

e 
ex

pr
es

si
on

DNA methylation beta value

Normal Tumor Normal Tumor
RP11−539E17.5

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

10
10

10
3

2

10
10

2

10
10

10
3

2

10
10

2

r = -0.498 r = -0.645 r = -0.511 r = -0.233

(legend on next page)

708 Cancer Cell 33, 706–720, April 9, 2018



randomly permuted the labels of lncRNAs and PCGs for 10,000

times and generated an empirical distribution to estimate the

FDR for each promoter. This analysis revealed that the lncRNA

promoters were significantly hypomethylated in all ten cancer

types (p < 10�15, Kolmogorov-Smirnov test, Figure 1C).

Integrative Analysis Identified 2,123 Recurrent
Epigenetically Regulated lncRNAs in 20 Cancer Types
To determine whether lncRNAs’ expression is regulated by the

DNAmethylation changes at their promoters (e.g., hypomethyla-

tion causes overexpression), we integrated the lncRNA expres-

sion data fromMiTranscriptome, which summarized the expres-

sion of 12,382 cancer-associated lncRNA transcripts using an ab

initio assembly method in 6,475 RNA sequencing (RNA-seq)

profiles, including 5,602 TCGA samples (Iyer et al., 2015). Our

analysis focused on TCGA samples across 20 cancer types

that have both DNA methylation and lncRNA expression data.

We applied a heuristic strategy to identify the lncRNAs that are

epigenetically activated (EA) or epigenetically silenced (ES) in

tumors in comparison to their DNA methylation status in normal

tissues. This method prioritized the lncRNAs that not only

exhibited a significant difference in DNA methylation between

tumors and normal tissues, but also exhibited expression

changes highly correlated with their DNA methylation alterations

(see details in the STAR Methods). A patient-centric matrix with

DNAmethylation status of 2,123 lncRNA genes across 20 cancer

types was characterized, including 1,006 EA and 1,117 ES

lncRNAs that showed epigenetic alteration in at least one cancer

type (Table S2). The top 20 most frequently EA and ES lncRNAs

are shown in Figure 2A. All the epigenetically regulated lncRNAs,

with either hypomethylation or hypermethylation in tumors, ex-

hibited a significant negative correlation (FDR < 0.01) between

their expression and promoter DNA methylation status (Figures

2B and 2C). Notably, a group of the EA lncRNAs in tumors was

not expressed in normal tissues (Figure S2A). This ‘‘on or off’’

expression pattern of EA lncRNAs potentiated them as prom-

ising diagnostic biomarkers. To further validate the methylation

status of the lncRNAs and their expression in cancer, we inves-

tigated the RNA-seq andHM450DNAmethylation profiles of 455

cancer cell lines from the CCLE and COSMIC databases (Barre-

tina et al., 2012). Among the top 40 lncRNAs, 34 (14 EA and 20 ES

lncRNAs) exhibited a similar expression pattern in cancer cell

lines and significantly negative correlation between their expres-

sion and promoter methylation (Figures 2D and S2B; Table S2).

Epigenetically Regulated lncRNAs Are Associated with
Tumor Survival and Protein-Coding Cancer Gene
Alterations
We next analyzed the association of lncRNA epigenetic status

with patient survival in 20 cancer types. Twelve of the top
Figure 2. Epigenetic Landscape of lncRNAs in Cancer

(A) Percentages of significant EA (top panel) or ES (bottom panel) lncRNAs in 20 ca

alteration in each cancer type. Purple indicates EA lncRNAs; green indicates ES

(B and C) Correlation of representative EA (B) or ES (C) lncRNAs’ expression and t

y axis shows expression level based on RNA-seq; the x axis, DNA methylation b

(D) Expression of the top 20 EA (top panel) and ES (bottom panel) lncRNAs in canc

cell lines with the lncRNA expressed (purple, absolute read count > 0) or not exp

See also Figure S2 and Table S2.
20 EA lncRNAs were significantly correlated with poor survival

in at least 1 cancer type, while 10 of the top 20 ES lncRNAs

were significantly correlated with favorable survival (Figures

S2C–S2E). Among these survival-related lncRNAs are SNHG12

and MINCR, which are epigenetically activated in multiple can-

cer types, including breast, bladder, endometrial, colorectal,

and lung cancer (Figure 2A; Table S2). These lncRNAs have

been documented to be overexpressed in a variety of cancer

types and to play oncogenic roles in regulating cell proliferation

and migration (Doose et al., 2015; Li et al., 2013; Ruan et al.,

2016). To explore the relationship between lncRNA epigenetic al-

terations and the somatic alterations of known tumor genes, we

integrated the lncRNA epigenetic alterations with the mutation

and copy-number alterations of known protein-coding cancer

genes in the same tumors (Vogelstein et al., 2013). Notably, the

epigenetically regulated lncRNAs show a strong co-occurrence

with a group of cancer gene mutations and copy-number alter-

ations (Figure S2F; Table S2). For example, EA lncRNAs are

significantly enriched in TP53mutated tumors in multiple cancer

types (Figures S2F and S2G). By contrast, ES lncRNAs exhibit

significant mutual exclusivity with EGFR amplifications and

mutations (Figure S2F).

EPIC1 Is Epigenetically Activated and Correlated with
Poor Survival in Breast Cancer
The lncRNA that is most frequently epigenetically activated in

multiple cancer types is ENSG00000224271 (epigenetically

induced lncRNA1 [EPIC1]) (Figure 2A). It is an intergenic lncRNA

(CPAT coding probability = 0.004) located on chr22:q13.31.

There are CpG islands within 164 bp downstream of this gene’s

transcription start site (Figure 3A). This lncRNA is epigenetically

activated in up to 90% of tumor samples across ten cancer

types, including breast cancer (Figures 2A and 2D; Table S2).

Our algorithm identified three probes in HM450 mapping to the

EPIC1CpG islands (Figure 3A). Based on the beta values of three

probes, three subgroups of breast cancer were identified by the

hierarchical clustering analysis in 534 breast tumors (Figure 3B).

The hypermethylated subgroup includes 196 (36.7%) breast tu-

mors and exhibits a high EPIC1methylation level similar to that in

normal breast tissues (Figure 3B). Breast tumors of this sub-

group are characterized by reduced EPIC1 expression (Figures

3C and 3D) and an improved overall survival in comparison to

the other two groups (Figure 3E). In contrast, patients whose tu-

mors exhibit EPIC1 hypomethylation and increased EPIC1

expression have the worst survival (Figures 3C–3E). To deter-

mine if EPIC1 expression is robustly associated with poor patient

survival in breast cancer, we re-annotated the probes from five

Affymetrix microarrays to lncRNAs and identified one probe

(1563009_at) in an Affymetrix HG-U133plus2 microarray that

specifically detected EPIC1 expression. As shown in Figure 3F,
ncer types. Each pie chart indicates the percentage of each lncRNA epigenetic

lncRNAs.

heir DNAmethylation level in cancer tissues (red) and normal tissues (blue). The

eta values based on Infinium HM450 BeadChip.

er cell lines from the CCLE database. Each pie chart indicates the percentage of

ressed (green, absolute read count = 0) in each cancer type.
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increased expression of EPIC1was consistently associated with

poor survival in 6 independent patient cohorts, including 905

breast tumors (Figures 3F and S3A).

Further analysis revealed that EPIC1 epigenetic activation is

significantly associated with luminal B and HER2 subtypes of

breast cancer (p < 0.001, Figures S3B and S3C). In 119 TCGA

luminal B tumors, patients with EPIC1 epigenetic activation

demonstrated significant poor survival (p = 0.002, Figure S3D).

The association between EPIC1 and breast cancer poor survival

remains significant after adjusting cancer subtypes along with

other prognostic factors including age and clinical stage (multi-

variate Cox regression model p = 0.02). In all 20 cancer types

assessed, EPIC1 epigenetic activation is also significantly corre-

lated with poor survival in endometrial cancer patients (UCEC,

Figure S2C).

Using RNA-seq and HM450 DNA methylation data in the

CCLE database, we observed a significant negative correlation

(p < 0.05) between endogenous EPIC1 expression levels and its

promoter methylation in 24 breast cancer cell lines (Figures S3E

and S3F). Among them, 18 cell lines showed epigenetic activa-

tion of EPIC1, while 4 (i.e., MB231, HCC1937, CAMA1, and

ZR-75-30) exhibited promoter hypermethylation and had low

EPIC1 expression (Figures S3E and S3F). Decitabine treatment

caused a dosage- and time-dependent EPIC1 expression and

demethylation in EPIC1 hypermethylated cell lines (e.g.,

MB231), but not in cells that already exhibit EPIC1 hypomethy-

lation and overexpression (e.g., MCF-7) (Figures 3G, 3H, and

S3G). Using a similar strategy, we selected seven other EA

lncRNAs based on their novelty and demonstrated that decita-

bine treatment significantly induced EA lncRNAs expression by

decreasing the DNA methylation level of their CpG islands (Fig-

ure S3H; Table S2).

To determine if EPIC1 is directly regulated by DNA methyl-

ation, we cloned EPIC1’s promoter region (including the CpG

islands) and performed in vitroDNAmethylation assay (Figure 3I).

Luciferase reporter assays revealed that the unmethylated

EPIC1 promoter (unMeth-EPIC1) led to a significantly higher

reporter activity compared with the methylated version (Meth-

EPIC1) (p < 0.01, Figure 3I). Collectively, these results demon-

strated that EPIC1 is directly regulated by DNA methylation at

the CpG islands in its promoter region.
Figure 3. Expression Level of EPIC1 Is Regulated by DNA Methylation

(A) The locations of EPIC1 gene (blue), CpG islands (green), and HM450 probes

(B) Heatmapwith beta values of DNAmethylation obtained from threeEPIC1HM45

using a hierarchical clustering analysis in tumors. Black, hypermethylation; green,

(blue) is shown as control. Full IDs of EPIC1 HM450 probes are cg10956848, cg

(C) Relative EPIC1 expression in three subgroups above, compared with the le

***p < 0.001.

(D) Correlation of EPIC1 expression with EPIC1 DNAmethylation status in breast c

status.

(E) Kaplan-Meier survival curve represents the proportion survival of breast canc

(F) Forest plot of EPIC1’s association with survival in six independent breast can

U133_Plus_2).

(G) qRT-PCR analysis of EPIC1 expression in MCF-7 and MB231 cells treated w

(H) EPIC1 methylation status detected by the same three probes (B) in breast ca

value are shown.

(I) Reporter assay of methylated and unmethylated EPIC1 promoters (top). In vitro

enzyme (bottom).

Error bars indicate mean ± SD, n = 3 for technical replicates. **p < 0.01. NS, not

See also Figure S3.
EPIC1 Functions as a Potential Oncogenic lncRNA by
Promoting Cell-Cycle Progression
To evaluate the oncogenic role of EPIC1 in cancer, we analyzed

the EPIC1 expression status in 28 cell lines across 8 cancer

types using qRT-PCR. In agreement with EPIC1’s activation in

the luminal B breast cancer subtype, EPIC1 is overexpressed

in luminal breast cancer cell lines (e.g., BT-474, MB361,

MCF-7, ZR-75-1, and T-47D) (Lehmann et al., 2011), along

with ovarian cancer (A2780cis andOVCAR-4), pancreatic cancer

(BxPC-3 and PANC-1), prostate cancer (PC-3), and leukemia

(K562) cell lines (Figures S4A–S4C). We further performed

50-RACE and 30-RACE cloning using total RNA from MCF-7

and T-47D cells to identify functional EPIC1 isoforms. Three

splice variants of EPIC1 were cloned, including isoform v1

(567 nt), isoform v2 (844 nt), and isoform v3 (882 nt) (Figures

S4D–S4F). All of them share same exon 1 and exon 2. We

designed six siRNAs targeting shared sequence of all isoforms

and screened three siRNAs that can readily knockdown EPIC1

expression (Figure S4G). EPIC1 knockdown resulted in a

decrease of cell proliferation in a time-dependent manner in

luminal breast cancer cells MCF-7 and ZR-75-1 (Figures

4A–4F). Soft agar assays further demonstrated that EPIC1

knockdown significantly inhibits the anchorage-independent

growth of cancer cells (Figure 4G). Moreover, cell-cycle analysis

revealed that silencing of EPIC1 resulted in G0/G1 arrest in

MCF-7 and ZR-75-1 cells (Figures 4C, 4F, and S4H). Next, we

established stable EPIC1 knockdown cells using lentiviral

shRNAs. Both shEPIC1 stable cells exhibited significantly

reduced cell proliferation (Figures S4I and S4J), anchorage-inde-

pendent growth (Figure S4K), and in vivo xenograft growth (Fig-

ures 4H and 4I), compared with the shCtrl cells. These results not

only suggest oncogenic activity of EPIC1 in vivo, but also provide

a potential therapeutic target for breast cancer treatment.

EPIC1 Is a Nuclear lncRNA that Regulates MYC Targets
Cell fractionation PCR and subcellular RNA-seq analyses re-

vealed that EPIC1 RNA is predominately located in the nucleus

(Figures 5A, S5A, and S5B), suggesting that EPIC1 might play

a role in transcriptional regulation and chromatin interactions

(Batista and Chang, 2013). To explore this possibility, RNA-seq

analyses were performed on MCF-7 cells transfected with two
and Associated with Poor Survival in Breast Cancer Patients

(red) in GRCh37 reference human genome (chr22:48,027,423-48,251,349).

0 probes in breast normal tissues and tumors. Three subgroupswere identified

intermediate; red, hypomethylation. EPIC1’s DNAmethylation in normal tissues

14752348, and cg08040429.

vel in normal tissues, respectively. The error bars represent standard errors.

ancer and normal tissues. Probe cg08040429 represents the DNAmethylation

er patients with three subgroups above.

cer cohorts. EPIC1’s expression is measured by Affymetrix 1563009_at (HG-

ith decitabine (DAC).

ncer cell lines treated with decitabine. Differences in z score-transformed beta

DNAmethylation status of EPIC1 promoters was confirmed by Hpall restriction

significant.
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Figure 4. EPIC1 Functions as an Oncogenic lncRNA in Breast Cancer

(A–C) qRT-PCR analysis of EPIC1 (A), MTT assay (B), and cell-cycle analysis (C) in MCF-7 cells treated with EPIC1 siRNAs (siE1 and siE2).

(D–F) qRT-PCR analysis of EPIC1 (D), MTT assay (E), and cell-cycle analysis (F) in ZR-75-1 cells treated with EPIC1 siRNAs.

(G) Anchorage-independent colony formation assays of MCF-7 (left) and ZR-75-1 (right) cells treated with EPIC1 siRNAs.

(H) Quantification of tumor growth in xenograft mouse models bearing with stable EPIC1 knockdown (shE1 and shE2) or control (shCtrl) MCF-7 cells.

Error bars indicate means ± SD, n = 3 for technical replicates. *p < 0.05, **p < 0.01.

(I) Representative tumor size (left), and quantification of tumor weight (right) from xenograft mousemodels. Data are presented asmeans ± SD (n = 10). **p < 0.01.

See also Figure S4.
siRNAs targeting EPIC1 individually or pooled. We have

confirmed that both siRNAs can readily knockdown the level of

nuclear EPIC1 RNA (Figure S5C). To exclude possible off-target

effects on gene expression associated with single siRNAs, we

focused only on genes regulated in the same direction in all three

transfection experiments. EPIC1 knockdown in MCF-7 cells re-

sulted in the regulation of 805 genes (upregulation of 317 genes

and downregulation of 488 genes) (Figure 5B; Table S3), which
712 Cancer Cell 33, 706–720, April 9, 2018
are highly overlapped with 2,005 EPIC1-associated genes that

were significantly correlated with EPIC1 expression across 559

TCGA breast tumors (p = 2.6 3 10�25, Figures 5B and 5C).

This overlap was even higher in the pathway analysis. Gene

set enrichment analysis (GSEA) analysis showed that cell-cy-

cle-related biological processes such as ‘‘MYC targets,’’ ‘‘G2M

checkpoint,’’ and ‘‘E2F targets’’ were significantly enriched in

the EPIC1-associated genes in 17 out of 20 cancer types
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(Figure 5D; Table S3). The same cellular processes were

enriched in theEPIC1-regulated genes inMCF-7 cells (Figure 5D;

Table S3). Among them, the MYC pathway/targets are promi-

nent gene sets enriched with EPIC1-regulated genes in both

tumor samples and cell lines (Figure 5E). For example, the

MYC targets CDC45, CDC20, and CCNA2 were significantly

downregulated by EPIC1 knockdown. Moreover, CDKN1A (en-

coding the p21 protein) was significantly induced after EPIC1

knockdown (Figures 5F, 5G, and S5D). p21 is a well-established

negative regulator of cell-cycle progression at G1 and S phase

that is directly inhibited by MYC (Gartel and Radhakrishnan,

2005). These observations are consistent with our observation

that EPIC1 knockdown resulted in cancer cells’ arrest at G0/G1

phase. Similarly, in MCF-7 and ZR-75-1 cells, MYC knockdown

also led to a pattern of MYC target expression and cell growth

comparable with EPIC1 knockdown (Figures 5G and S5E–

S5H). This suggested that the oncogenic role of EPIC1 may be

associated with MYC protein.

EPIC1 Interacts with the 148–220 Amino Acid Region of
MYC through Its 129–283 nt Sequence
To study the interaction between EPIC1 RNA and MYC protein,

we overexpressed each of three EPIC1 isoforms (i.e., v1, v2, and

v3) with Flag-tagged MYC protein in 293T cells, and performed

RNA immunoprecipitation (RIP) assay. This analysis revealed

that EPIC1 isoforms v1 and v2 could be enriched by MYC RIP

(Figure S6A). In v1 or v2 isoforms overexpressing MCF-7 cells,

only the v1 isoform could regulate MYC target genes (Figures

S6B and S6C). We further observed that overexpression of the

EPIC1 v1 isoform promoted G1 phase progression and in vivo

xenograft growth (Figures S6D–S6F). It is apparent to us that

the v1 isoform is the functional isoform of EPIC1 gene in breast

cancer. We therefore used isoform v1 (567 nt) as the reference

sequence of EPIC1 in the following study.

RNA pull-down assay showed that MYC protein could be

co-precipitated by an in-vitro-transcribed biotinylated EPIC1

sense transcript, but not by the EPIC1 antisense transcript (Fig-

ure 6A). MYC RIP with cell lysates from MCF-7 cells was then

performed to confirm the interaction between endogenous

EPIC1 and MYC protein (Figures 6B, S6G, and S6H). A well-

documented MYC interacting lncRNA, PVT1 (Tseng et al.,

2014), was included as positive control and could also be

enriched by MYC RIP (Figure 6B). Further in vitro binding assay

using in-vitro-transcribed EPIC1 RNA and recombinant His-

tagged MYC protein demonstrated that EPIC1 binds directly to
Figure 5. EPIC1 Is a Nuclear lncRNA Regulating MYC Targets Express
(A) qRT-PCR analysis of EPIC1 expression (top) and western blot (bottom) of subc

cytoplasmic and nuclear gene localization, respectively. SNRP70 and GAPDH se

cytoplasmic (Cyto), and nuclear fractionation (Nuc). Error bars indicate mean ± S

(B) Schematic of the identification of EPIC1 correlated genes in breast tumor

cells (green).

(C) Co-expression analysis showing that EPIC1 expression is associated with 2,0

one patient.

(D) Gene set enrichment analysis (GSEA) of the EPIC1-related pathways in 20 c

heatmap indicates the GSEA scores.

(E) Association between the enrichment of MYC targets and EPIC1 expression in

(F) EPIC1-regulated gene expression by qRT-PCR analysis (top) and RNA-seq (b

(G) Western blot of MYC-regulated targets in MCF-7 (left) and ZR-75-1 (right) ce

See also Figure S5 and Table S3.
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MYC protein (Figure 6C). To map the EPIC1 functional motifs

corresponding to MYC binding, we conducted an in vitro RNA

pull-down assay using a series of truncated EPIC1 fragments.

This analysis revealed that nucleotides 1–358 of EPIC1 (EPIC1

1–358 nt) are sufficient to interact with MYC protein, while other

EPIC1 truncated fragments could not (Figure 6D). To map with

greater precision the sequence of EPIC1 that binds to MYC,

we further designed seven truncated or deletion mutants of the

EPIC1 1–358 nt region and revealed that three deletion mutants

(D121-180 nt, D181-240 nt, and D241-300 nt) can abolish EPIC1

binding to MYC protein. Deletion of all three regions (129–283 nt)

also abolished EPIC1’s interaction with MYC protein (named as

DMYC-EPIC1; Figures 6E and 6F). These data suggested that

the EPIC1 129–283 nt region is necessary for EPIC10s binding

to the MYC protein. MYC protein domain mapping studies re-

vealed that EPIC1 binds the 148–220 amino acid (aa) region of

MYC, which is not overlapped with the well-characterized tran-

scriptional activation domain and basic-helix-loop-helix domain

of MYC protein (Luscher, 2001; von der Lehr et al., 2003) (Figures

6G and 6H). Deletion of the 148–220 aa region of MYC protein

(named as DEPIC1-MYC) abolished its interaction with EPIC1

(Figures 6G and 6H). Collectively, our findings demonstrated

that EPIC1 interacts with the 148–220 aa region of MYC through

its 129–283 nt sequence.

The Oncogenic Role of EPIC1 Partially Depends on Its
Regulation of MYC Occupancy on Target Promoters
With the observation that EPIC1 directly interacts with MYC, we

further analyzed the effect of EPIC1 on MYC target gene

reporters (e.g., p21 and CCNA2 promoters) in MCF-7 cells.

The reporter assays revealed that knockdown of either EPIC1

orMYC significantly regulates p21-Luc and CCNA2-Luc reporter

luciferase activities (Figure 7A). These observations indicate that

EPIC1 directly regulates the expression of MYC targets through

their promoter regions. Interestingly, EPIC1 knockdown had little

effect on the expression of MYC (Figure 5G), which led to our

hypothesis that EPIC1 may regulate the transcriptional activity

of the MYC protein.

To test this hypothesis, we performed an integrated analysis on

MYC chromatin immunoprecipitation sequencing (ChIP-seq)

data (Lee et al., 2012) and RNA-seq data of EPIC1 knockdown

MCF-7 cells. Among 805 EPIC1-regulated genes, 785 have

robust MYC occupancy on their promoters in two biological

replicates of MCF-7 ChIP-seq data. Interestingly, we did not

observe a significant correlation between global MYC binding
ion
ellular fractionation in MCF-7cells.GAPDH and U6 RNA served as markers for

rved as a specific nuclear and cytoplasmic marker to whole-cell lysates (WCL),

D, n = 3 for technical replicates.

s from TCGA (yellow), and genes potentially regulated by EPIC1 in MCF-7

05 genes in 559 patients with breast cancer (BRCA). Each column represents

ancer types (left panel) and EPIC1 knockdown MCF-7 cells (right panel). The

breast tumors by GSEA analysis (D).

ottom). Error bars indicate mean ± SD, n = 3 for technical replicates.

lls treated with EPIC1 and MYC siRNAs.
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Figure 6. EPIC1 Binds Directly with MYC

(A) Western blot of MYC proteins retrieved by in-vitro-transcribed biotinylated EPIC1 from MCF-7 cell nuclear extracts. Antisense EPIC1 was used as a negative

control. S, sense strand; AS, antisense strand.

(B) qRT-PCR analysis ofEPIC1 andPVT1 enriched byMYCproteins inMCF-7 cells.Western blot ofMYC is shown (right).HOTAIR andGAPDH served as negative

controls. Error bars indicate mean ± SD, n = 3 for technical replicates. **p < 0.01.

(C) Western blot of recombinant MYC proteins retrieved by EPIC1 RNA in in vitro binding assay. EPIC1 antisense was used as a negative control.

(D) Western blot of MYC pulled down by truncated EPIC1.

(E) Mapping of the MYC binding region within the 1–358 region of EPIC1.

(F) Schematic of truncated or deletion mutants of EPIC1. The MYC binding capability is shown (right).

(G) Western blot of truncated MYC proteins retrieved by in-vitro-transcribed EPIC1.

(H) Schematic of truncated MYC protein. The EPIC1 binding capability is shown. TAD, N-terminal transactivation domain; MB1-3, MYC boxes 1–3; bHLHLZ,

basic-helix-loop-helix-leucine zipper domain; CTD, C-terminal domain.

See also Figure S6.
affinity and differential expression (i.e., fold change) after EPIC1

knockdown in MCF-7 cells, suggesting that EPIC1 may regulate

MYC’s occupancy on a specific group of targets. By further

considering previously validated MYC targets (Li et al., 2003;

Zeller et al., 2006), we identified 40 possible targets of the

EPIC1-MYC regulatory axis (Figures 7B and S7A; Table S4).

ChIP-qPCR were performed and validated that EPIC1 knock-

down significantly reducesMYC’s occupancies on the promoters
of 26 targets, including CDKN1A (p21), CCNA2, CDC20, and

CDC45 (Figures 7C, S7B, and S7C). It is known that MYC binds

to DNA and functions as a transcription factor by heterodimeriza-

tion with another transcription factor, MAX (Amati et al., 1993;

Blackwood and Eisenman, 1991). MYC and MAX Co-IP assay

inMCF-7 cells revealed that EPIC1 knockdown could moderately

reduce the formation of MYC-MAX complexes (Figure S7D).

Moreover, overexpression of EPIC1, but notDMYC-EPIC1, could
Cancer Cell 33, 706–720, April 9, 2018 715
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Figure 7. MYC Is Required for the Regulatory Role of EPIC1 in Cancer

(A) Reporter assay of CDKN1A (p21) and CCNA2 (Cyclin A2) promoters.

(B) Alignment of two biological replicates of MYC ChIP-seq in MCF-7 cells (green) and RNA-seq from siCtrl (blue) and siEPIC1 (red) RNA-treated MCF-7 cells.

CDKN1A and CCNA2 genomic locus are shown.

(C) ChIP-qPCR analysis of MYC occupancy on the promoters of target genes in MCF-7 cells treated with EPIC1 siRNAs.

(DandE)Western blot ofMYC targets (D) andMTTassay (E) after treatmentwithMYC siRNAs inMCF-7cellswith stable overexpression ofEPIC1andempty vector.

(F and G) Cell-cycle analysis (F) and qRT-PCR analysis of EPIC1, CDKN1A, and CCNA2 level (G) in MCF-7 cells transfected with LNA against EPIC1 followed by

overexpression of indicated vectors.

Error bars indicate mean ± SD, n = 3 for technical replicates. *p < 0.05, **p < 0.01. NS, not significant.

See also Figure S7 and Table S4.
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enhance the reporter luciferase activities mediated by MYC

and MAX (Figure S7E). These results suggest that EPIC1 pro-

motes MYC’s occupancy on EPIC1-regulated genes through its

129–283 nt sequence (i.e., MYC-binding sequence).

To further determine the role of the EPIC1-MYC regulatory axis

in cancer, we performed the MYC knockdown in EPIC1 stably

overexpressing MCF-7 cells, and observed that EPIC1 regula-

tion of cell proliferation and MYC target expression were attenu-

ated byMYCknockdown (Figures 7D and 7E). Overexpression of

MYC, but not EPIC1-binding-deficient mutant MYC proteins

(DEPIC1-MYC), regulates CCNA2 and p21 expression (Fig-

ure S7F). We further depleted the endogenous EPIC1 expression

using locked nucleic acid (LNA) in MCF-7 cells, followed by

overexpression of either LNA-resistant wild-type EPIC1 (WT-

R-EPIC1) or deletion mutant of 129–283 nt MYC binding region

(DMYC-R-EPIC1). Similar to EPIC1 siRNA treatment, LNA

knockdown of EPIC1 significantly caused G1 arrest of MCF-7

cells, which could be rescued by reintroduction of full-length

EPIC1, but not DMYC-EPIC1 (Figures 7F and S7G). The expres-

sion of full-length and the truncated EPIC1swas confirmed to be

comparable levels to rule out the influence of transfection effi-

ciency (Figure 7G). Consistently, LNA knockdown of EPIC1

also curtailed the expression of MYC target genes. Reintroduc-

tion of wild-type EPIC1, but not DMYC-EPIC1, was able to

rescue the regulation of these genes (Figure 7G). These results

suggested that the oncogenic role of EPIC1 is at least in part

dependent on its interaction with the MYC protein.

DISCUSSION

Previous studies, by repurposingcopy-number andgeneexpres-

sionmicroarray data, have successfully identified the copy-num-

ber alterations (Hu et al., 2014; Leucci et al., 2016; Tseng et al.,

2014; Yan et al., 2015) and expression alterations of lncRNA

(Du et al., 2013) in cancer. In the present study, we repurposed

and integrated multi-dimensional genomic and epigenetic data

from 6,475 tumor samples and 455 cancer cell lines in the

TCGA and CCLE projects. These data were remapped/realigned

to 9,606 annotated human lncRNAs to comprehensively charac-

terize the lncRNA DNA methylation landscape in cancer. Our

analyses demonstrate that integrating HM450 microarray and

RNA-seq data is a cost-effective strategy to research the DNA

methylation regulation of lncRNA genes given the large number

of HM450 and RNA-seq datasets available in public repositories.

Our study has revealed that lncRNAs can be epigenetically acti-

vated in tumors by loss of DNA methylation in the promoter re-

gion, which is in stark contrast to the well-documented CIMP

phenotype of PCGs in tumors. By further integrating with the pro-

tein-coding cancer gene alterations in same tumors, we

observed that lncRNA epigenetic activation exhibited a strong

co-occurrence with TP53 mutation in multiple cancer types.

Emerging evidence has demonstrated that p53 is a master regu-

lator of lncRNAs’ expression in cancer (Sanchez et al., 2014;

Schmitt et al., 2016). Future study is warranted to determine

whether loss of DNA methylation makes the promoters of these

lncRNAs accessible to transcription factors, such as p53, and

leads to transcriptional activation.

We hypothesize that, if some lncRNAs are recurrently targeted

by epigenetic alterations in tumors, they may play an important
role in tumor initiation and progression. Indeed, the epigeneti-

cally regulated lncRNAs identified in this study include a number

of known cancer-related lncRNAs, such as KCNQ1OT1 (Engel

et al., 2000), MEG3 (Zhou et al., 2012), MINCR (Li et al., 2013),

HOTAIR (Gupta et al., 2010), and WT1-AS (Hancock et al.,

2007). Consistent with their somatic DNAmethylation alterations

identified in this study, germline epigenetic defects in some of

those lncRNAs have been documented to cause predisposition

to Wilms tumor (Scott et al., 2008) and pediatric adrenocortical

tumors (Wijnen et al., 2012).

Encouraged by the recapitulation of documented cancer-

related lncRNAs, we mechanistically validated the most

frequently EA lncRNA, EPIC1, as a potential oncogene. We

have demonstrated that EPIC1 interacts with MYC protein

through its 129–283 nt region and increases MYC occupancy

on EPIC1-regulated genes. The oncogenic role of MYC has

been well documented in cancer initiation and progression

(Dang, 2012). As an oncogene,MYC can be activated bymultiple

mechanisms in cancer. Chromosomal rearrangement is believed

to be the most common genetic alteration ofMYC (Dang, 2012).

Other MYC activation mechanisms include transcriptional regu-

lation, mRNA stabilization, and protein overexpression and

stabilization (Kress et al., 2015). Emerging evidence has uncov-

ered lncRNA’s role for MYC activation in cancers. Three recent

reports identified lncRNA CCAT1-L (colorectal cancer-associ-

ated transcript 1), GHET1 (gastric carcinoma highly expressed

transcript 1), and PCGM1 (prostate cancer gene expression

marker 1) to be involved in modulating the transcription (Xiang

et al., 2014) or RNA stability (Yang et al., 2014) of MYC in colo-

rectal, gastric, and prostate cancers (Hung et al., 2014). Another

study demonstrated lncRNA PVT1 (plasmacytoma variant trans-

location 1) as an oncogenic lncRNA that interacts and stabilizes

the MYC protein (Tseng et al., 2014).

However, little is known about whether and how lncRNAs

regulate the transcriptional activity of MYC. MYC protein alone

cannot form a homodimer nor bind to DNA in vivo. In most

cases, MYC heterodimerizes with a partner protein, MAX

(Amati et al., 1993; Blackwood and Eisenman, 1991) via a

basic-helix-loop-helix-leucine zipper domain. The MYC-MAX

complex binds directly to DNA sequence (CACA/GTG), which

is a subset of the general E-box (CACGTG) DNA recognition

sequence and functions as transcriptional activator or

repressor (Blackwood and Eisenman, 1991; Luscher, 2001). It

has been reported that MYC is bound to �25,000 sites in the

human genome (Cawley et al., 2004; Fernandez et al., 2003).

Among those in vivo MYC binding sites, only a small set of

sites have an MYC-MAX consensus CACA/GTG sequence

(Fernandez et al., 2003). One reason for this discrepancy is

that MYC can be recruited to non-canonical binding sites by

other transcription factors. For example, MYC can interact

with Miz1, which recruits MYC to its core promoter sequences

that lack an MYC-MAX binding motif (Peukert et al., 1997).

Other proteins, which recruit MYC to their cognate DNA bind-

ing sites, include specificity protein-1 (Gartel et al., 2001), nu-

clear factor Y (Izumi et al., 2001), transcription factor II-I) (Roy

et al., 1993), and yingyang-1 (Shrivastava et al., 1993). In the

current study, our results suggest that EPIC1 specifically

regulates MYC’s occupancy on a subset of MYC targets.

Our results also showed that EPIC1 can moderately enhance
Cancer Cell 33, 706–720, April 9, 2018 717



MYC-MAX interaction. It is possible that EPIC1 only influences

MYC’s occupancy on canonical MYC-MAX binding sites, but

not the non-canonical MYC binding sites mediated by other

‘‘tethering factors.’’ Another possible explanation is that

EPIC1 may function as a ‘‘guide’’ RNA to facilitate MYC-

MAX’s regulation on specific targets by directly binding to

double-strand DNA. Future study is required to further define

how EPIC1 regulates MYC’s occupancy on these specific

MYC targets.

In summary, the establishment of a detailed knowledge base

of the DNA methylation-altered lncRNAs in cancer will facilitate

the identification of cancer-driving lncRNAs. Moreover, the

mechanistic characterization of EPIC1 and its functional cross-

talk with the well-established oncogene MYC may help to pave

the way to develop cancer therapies that target MYC through

its interaction with EPIC1. The strong prognostic association of

EPIC1, the robust tumor growth suppression by the EPIC1

knockdown, and the illustration of EPIC1’s mechanism to pro-

mote breast cancer will shed light on the future development

of lncRNA-based breast cancer therapies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

SNRP70 Abcam Cat# Ab83306; RRID: AB_10673827

MAX Novus Cat# NBP1-49963; RRID: AB_10012153

GAPDH Santa Cruz Cat# sc-25778; RRID: AB_10167668

Cyclin A2 Santa Cruz Cat# sc-596; RRID: AB_631330

MYC Santa Cruz Cat# sc-789; RRID: AB_631274

MAX Santa Cruz Cat# sc-764; RRID: AB_631276

MYC Cell signaling Cat# 13987; RRID: AB_2631168

MYC Cell signaling Cat# 9402; RRID: AB_10693752

p21 Cell signaling Cat# 2947; RRID: AB_823586

CDC20 Cell signaling Cat# 14866; RRID: AB_2715567

CDC45 Cell signaling Cat# 11881; RRID: AB_2715569

FLAG Cell signaling Cat# 14793; RRID: AB_2572291

Normal Rabbit IgG Cell signaling Cat# 2729; RRID: AB_2617119

b-actin Sigma-Aldrich Cat# A5441; RRID: AB_476744

Anti-FLAG M2 affinity gel Sigma-Aldrich Cat# A2220; RRID: AB_10063035

Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP ThermoFisher Cat# 31430; RRID: AB_228307

Goat anti-Rabbit IgG (H+L) Secondary Antibody, HRP ThermoFisher Cat# 31460; RRID: AB_228341

Rabbit TrueBlot: Anti-Rabbit IgG HRP Rockland Cat# 18-8816-33; RRID: AB_2610848

Mouse TrueBlot ULTRA: Anti-Mouse IgG HRP Rockland Cat# 18-8817-33; RRID: AB_2610851

Chemicals, Peptides, and Recombinant Proteins

Lipofectamine 2000 Reagent ThermoFisher Cat# 11668019

Lipofectamine RNAiMAX Reagent ThermoFisher Cat# 13778150

Lipofectamine 3000 Reagent ThermoFisher Cat# L3000015

T7 RNA Polymerase Roche Cat# 10881775001

PfuUltra II Fusion HotStart DNA Polymerase Agilent Technologies Cat# 600674

RNase Cocktail Enzyme Mix ThermoFisher Cat# AM2286

Proteinase K NEB Cat# P8107S

RQ1 DNase Promega Cat# M198A

BD Pharmingen Stain Buffer BD Biosciences Cat# 554656

BD Pharmingen PI/RNase Staining Buffer BD Biosciences Cat# 550825

Pierce Protein A/G Agarose ThermoFisher Cat# 20421

Dynabeads MyOne Streptavidin C1 ThermoFisher Cat# 65001

Protease Inhibitor Cocktail Sigma-Aldrich Cat# P8340

Halt Protease& Phosphatase Single-Use Inhibitor Cocktail ThermoFisher Cat# 78442

Puromycin Fisher BioReagents Cat# BP2956-100

Hexadimethrine bromide Sigma-Aldrich Cat# H9268

Decitabine LC Laboratories Cat# D-3899

30% Acrylamide/Bis Solution 29:1 Bio-Rad Cat# 161-0156

10x Tris/Glycine/SDS Buffer Bio-Rad Cat# 161-0772

Immun-Blot PVDF Membrane Bio-Rad Cat# 162-0177

Blue X-Ray Film Phenix Cat# F-BX810

Tween 20 Fisher BioReagents Cat# BP337-100

Triton X-100 Bio-Rad Cat# 161-0407

Agarose Bio-Rad Cat# 161-3102

(Continued on next page)

Cancer Cell 33, 706–720.e1–e9, April 9, 2018 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

NonFat Dry Milk Lab Scientific Cat# M0841

Nonidet-P40 US Biological Cat# N3500

Bovine Serum Albumin Santa Cruz Cat# sc-2323

Bovine Serum Albumin Sigma-Aldrich Cat# A2153

NuSieve GTG Agarose Lonza Cat# 50081

Recombinant Human MYC protein Abcam Cat# Ab84132

Critical Commercial Assays

High-Capacity cDNA Reverse Transcription Kit Applied Biosystems Cat# 4368813

Biotin RNA Labeling Mix Roche Cat# 11685597910

Power SYBR Green PCR Master Mix Applied Biosystems Cat# 4367660

ECL Western Blotting Substrate ThermoFisher Cat# 32106

PARIS Kit ThermoFisher Cat# AM1921

BCA Protein Assay Kit ThermoFisher Cat# 23225

FirstChoice RLM-RACE Kit ThermoFisher Cat# AM1700

QuickChange II XL Site-Direct Mutagenesis Kit Agilent Technologies Cat# 200522

CellTiter 96 Non-Radioactive Cell Proliferation Assay Promega Cat# G4100

TOPO TA Cloning Kit ThermoFisher Cat# 1715582

AmpliTaq Gold 360 Master Mix Applied Biosystems Cat# 4398881

Deposited Data

RNA-seq based gene expression in MCF-7 cells

after siRNA-mediated knockdown of EPIC1

This paper GSE98538

DNA methylation data of breast cancer cells (Li et al., 2014) GSE57342

DNA methylation data of breast cancer cells (Di Cello et al., 2013) GSE44837

Gene expression profile of breast cancer patients https://www.ncbi.nlm.nih.gov/geo GSE20711

Gene expression profile of breast cancer patients https://www.ncbi.nlm.nih.gov/geo GSE21653

Gene expression profile of breast cancer patients https://www.ncbi.nlm.nih.gov/geo GSE17907

Gene expression profile of breast cancer patients https://www.ncbi.nlm.nih.gov/geo GSE20685

Gene expression profile of breast cancer patients https://www.ncbi.nlm.nih.gov/geo GSE16446

Gene expression profile of breast cancer patients (Li et al., 2010b) GSE19615

Experimental Models: Cell Lines

MCF10A ATCC Cat# CRL-10317; RRID: CVCL_10317

BT-20 ATCC Cat# HTB-19; RRID: CVCL_0178

BT-474 ATCC Cat# HTB-20; RRID: CVCL_0179

HCC1937 ATCC Cat# CRL-2336; RRID: CVCL_0290

Hs578T ATCC Cat# HTB-126; RRID: CVCL_0332

MDA-MB-231 (MB231) ATCC Cat# HTB-26; RRID: CVCL_0062

MDA-MB-361 (MB361) ATCC Cat# HTB-27; RRID: CVCL_0620

MDA-MB-468 (MB468) ATCC Cat# HTB-132; RRID: CVCL_0419

MCF-7 ATCC Cat# HTB-22; RRID: CVCL_0031

T-47D ATCC Cat# HTB-133; RRID: CVCL_0553

ZR-75-1 ATCC Cat# CRL-1500; RRID: CVCL_0588

A2780 ECACC Cat# 93112519; RRID: CVCL_0134

A2780cis ECACC Cat# 93112517; RRID: CVCL_1942

IGR-OV-1 NIH/NCI Cat# IGR-OV1; RRID: CVCL_1304

NIH:OVCAR-3 ATCC Cat# HTB-161; RRID: CVCL_0465

OVCAR-4 NIH/NCI Cat# OVCAR-4; RRID: CVCL_1627

OVCAR-8 NIH/NCI Cat# OVCAR-8; RRID: CVCL_1629

SK-OV-3 ATCC Cat# HTB-77; RRID: CVCL_0532
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

293T ATCC Cat# CRL-3216; RRID: CVCL_0063

E. coli DH5a Competent Cells ThermoFisher Cat# 18265017

E. coli Stbl3 Competent Cells ThermoFisher Cat# C737303

Experimental Models: Organisms/Strains

Athymic nude Mice Charles River N/A

Oligonucleotides

siRNA, LNA, and shRNA target sequence, see Table S5 This paper N/A

Primers for qRT-PCR and ChIP-PCR, see Table S5 This paper N/A

Primers for plasmid constructs, see Table S5 This paper N/A

Primers for in vitro transcribed RNA, see Table S5 This paper N/A

Recombinant DNA

pBABE Puro Addgene Cat# 1764

pLnxEXP Addgene Cat# 64865

pBABE-lnc This paper N/A

pBABE-lnc EPIC1 v1 This paper N/A

pBABE-lnc EPIC1 v2 This paper N/A

pBABE-lnc EPIC1 v3 This paper N/A

psPAX2 Addgene Cat# 12260

pVSV-G Addgene Cat# 8454

pLKO.1 TRC Cloning Vector Addgene Cat# 10878

pLKO.1 shCtrl This paper N/A

pLKO.1 shEPIC1 1# This paper N/A

pLKO.1 shEPIC1 2# This paper N/A

pCDH-CMV-MCS-EF1-Puro System Biosciences Cat# CD510B-1

pCDH EPIC1 v1 This paper N/A

pCDH EPIC1 v1 D1-60nt This paper N/A

pCDH EPIC1 v1 D61-120nt This paper N/A

pCDH EPIC1 v1 D121-180nt This paper N/A

pCDH EPIC1 v1 D181-240nt This paper N/A

pCDH EPIC1 v1 D241-300nt This paper N/A

pCDH EPIC1 v1 D301-358nt This paper N/A

pCDH EPIC1 v1 D129-283nt This paper N/A

pCDH EPIC1 v1 LNA_R This paper N/A

pCDH EPIC1 v1 D129-283nt LNA_R This paper N/A

WWP-Luc (p21/WAF1 promoter) Addgene Cat# 16451

pGL3 Basic Promega Cat# E1751

EPIC1-Luc This paper N/A

CCNA2-Luc This paper N/A

b-Gal (Niu et al., 2017) N/A

pCMV6-XL5-MYC OriGene Cat# SC112715

pCMV-Tag2B (Flag) Agilent Technologies Cat# 211172

pCMV-Flag-MYC This paper N/A

pCMV-Flag-MYC N220 This paper N/A

pCMV-Flag-MYC N366 This paper N/A

pCMV-Flag-MYC DN147 This paper N/A

pCMV-Flag-MYC D148-220 (DEPIC1) This paper N/A

pCMV-Flag-MYC DN220 This paper N/A

pLVX-IRES-Hygro Clontech Cat# 632185

pLVX-HA-MAX Hygro This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pLVX-HA-MYC Hygro This paper N/A

pLVX-HA-MYC D148-220 (DEPIC1) Hygro This paper N/A

Software and Algorithms

GraphPad Prism GraphPad Software https://www.graphpad.com/scientific-

software/prism/

FlowJo FLOWJO, LLC https://www.flowjo.com/solutions/flowjo

ImageJ ImageJ https://imagej.nih.gov/ij/download.html

R R https://www.r-project.org/about.html

STAR STAR https://github.com/alexdobin/STAR

RSEM RSEM https://deweylab.github.io/RSEM/

GSEA GSEA http://software.broadinstitute.org/gsea/

index.jsp

ggtern R package https://cran.r-project.org/web/packages/

ggtern/

survival R package https://cran.r-project.org/web/packages/

survival/index.html

ggplot2 R package http://ggplot2.org/

CISTROM Cistrome Project http://www.cistrome.org/Cistrome/

Cistrome_Project.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Da Yang

(dyang@pitt.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture, RNA Interference, LNA Transfection, and Plasmid Transfection
Human breast epithelial cell line, MCF10A, and human breast cancer cell lines, BT-20, BT-474, HCC1937, Hs578T, MCF-7, MDA-

MB-231 (MB231), MDA-MB-361 (MB361), MDA-MB-468 (MB468), T-47D, and ZR-75-1, and human ovarian cancer cell lines,

SK-OV-3, and NIH: OVCAR-3, and human pancreatic cancer cell lines, AsPC-1, BxPC-3, and PANC-1, and human prostate cancer

cell lines, DU 145, and PC-3, and human leukemia cell line K562, and human lung cancer cell line A549, and human cervical cancer

cell line HeLa, and human liver cancer cell line Hep G2, and human embryonic kidney (HEK) 293T cells were purchased from Amer-

ican Type Culture Collection (ATCC) and cultured as suggested by ATCC’s guidelines. Human ovarian cancer cell lines, IGR-OV-1,

OVCAR-4, and OVCAR-8 were purchased fromNIH/NCI and kept in RPMI 1640medium supplemented with 10% fetal bovine serum

(FBS), 1% penicillin, and 1% streptomycin. The A2780 human ovarian cancer cell line and the cisplatin resistant version of the cell

line, A2780cis, were obtained from the European Collection of Cell Cultures (ECACC), supplied by Sigma-Aldrich, and cultured in

RPMI 1640 medium supplemented with 2 mM glutamine, 10% FBS, 1% penicillin, and 1% streptomycin; A2780cis cells were

also supplemented with 1 mM cisplatin. Human pancreatic duct epithelial cell line (HPDE), and phoenix cells were kindly provided

by Dr. Wen Xie (Department of Pharmaceutical Sciences, University of Pittsburgh), and HPDE cells were maintained in Keratino-

cyte-SFM medium supplemented with human recombinant epidermal growth factor and bovine pituitary extract (ThermoFisher,

#17005042) and phoenix cells were maintained in DMEM supplemented with 10% FBS, 1% penicillin, and 1% streptomycin.

For RNA interference, cells were transfected with 40 nM siRNA targeting EPIC1, MYC, or a control siRNA using Lipofectamine

RNAiMAX (ThermoFisher, #13778150) per the manufacturer’s instructions. Total RNA was isolated 72 hr later for real-time PCR

analysis. The siRNA sequences are listed in Table S5.

For LNA transfection, cells were transfected with 40 nMLNA oligos targeting EPIC1, and a scramble control using LipofectamineTM

RNAiMAX per the guidelines. The LNA oligos were designed and synthesized from Exiqon, and detailed sequences are listed in

Table S5.

For plasmid transfection, cells were transfected with plasmid using LipofectamineTM 2000 (ThermoFisher, #11668019) or Lipofec-

tamineTM 3000 (ThermoFisher, #L3000015) as suggested approaches.
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In Vivo Xenograft Model
Briefly, 5- to 6-week-old female athymic nudemice (Charles River) were used for the xenograft model. MCF-7 cells stably expressing

shCtrl and shEPIC1were trypsinized and washed twice with sterilized PBS, and then, 0.2 ml of PBS containing 5 x 106 cells was sub-

cutaneously inoculated into the flanks of the mice. Mice were monitored twice every week for tumor growth, and tumor size was

measured using a caliper. Tumor volume in mm3 was calculated using the formula: Tumor volume = 0.5 x (width)2 3 length. Eight

weeks after inoculation, micewere sacrificed in keepingwith the policy for the humane treatment of tumor-bearing animals. All animal

studies were performed in accordance with the institutional guidelines, and the experiments followed the protocols approved by the

Institutional Animal Care and Use Committee (IACUC) of the University of Pittsburgh.

METHODS DETAILS

Data Collection
DNA methylation, PCG expression, whole-exome mutation and GISTIC copy number alteration data were downloaded from TCGA

Pan-Cancer project (Data Freeze 1.3). The lncRNA annotation was downloaded from GENCODE (V22, GRCh38). There were 7,656

intergenic, 5,565 antisense, and 920 sense intronic lncRNAs. H3K4me3 and H3K27ac ChIP-seq data for seven cell lines were down-

loaded from the UCSC genome browser: Integrated Regulation from ENCODE Tracks. DNA methylation data for breast cancer cell

lines were downloaded from GSE57342 (Li et al., 2014) and GSE44837 (Di Cello et al., 2013).

RNA-seq data from 781 cancer cell lines in the CCLE database were downloaded from Expression Atlas (E-MTAB-2770). HM450

DNA methylation profile of 1,028 cancer cells lines form COSMIC database (Iorio et al., 2016). There are 455 cells which have both

HM450 DNAmethylation and RNA-seq data. The BAM files of RNA-seq of 939 breast cancer tumors were downloaded from Cancer

Genomics Hub.

Mapping the Probes to GENCODE Genes
The genomic coordinates of HM450 probes based on GRCh37 were first transferred to genomic coordinates in GRCh38 using

LiftOver (UCSC genome browser). We then searched the nearest TSS of PCG and lncRNA for each probe based on GENCODE

V22 annotation. In this way, we defined: (1) the PCG probes, located in the PCG promoter region (+/- 3 kb from the TSS); (2) the

lncRNA probes, located in the lncRNA promoter region; (3) the shared probes, located in both the PCGand lncRNA promoter regions;

and (4) the non-probes, which are not located in any promoter regions (Figure S1B).

DNA Methylation Dysregulation Pattern Analysis in Cancers
DNA methylation dysregulation in cancers showed a different beta value pattern in lncRNA promoter and protein-coding promoter

regions. To evaluate the statistical significance of the difference between methylation in lncRNA and PCG promoter regions, we

permuted the annotation for each probe 10,000 times to generate an experimental distribution of DNA methylation change. Through

comparison with the experimental distribution, an empirical p value could be calculated. Finally, the weighted two-dimensional kernel

density estimation R function kde2d.weighted (package: ggtern) was used to measure the distribution of hypomethylation or hyper-

methylation according to the distance to promoters of lncRNA and PCGs.

MiTranscriptome Data Renormalization
Recent reports have revealed that highly expressed genes affect the normalization scale much more and cause a bias against low-

expression genes such as lncRNAs (Li et al., 2010a; Wagner et al., 2012). To precisely evaluate the alteration of lncRNA expression in

tumors, we renormalized the MiTranscriptome profile using a method similar to that described in S. Anders et al. (Anders and Huber,

2010). Specifically, a scaling factor for each sample was calculated as the median of the expression ratio to a pseudo-reference

sample for each gene. The pseudo-reference sample was computed as themedian expression level across all samples for that gene.

The formula to calculate the i-th sample’s scaling factor:

scalei =medianj = 1.n

�
Eij

mediani = 1.mðEijÞ
�

where E indicates the expression profile, which hasm samples and n genes. The denominator of the formula can be interpreted as j-th

gene expression level of the pseudo-reference sample.

Characterization of the lncRNA Landscape
We used a strategy similar as described in TCGA Glioblastoma project (Brennan et al., 2013) to characterize the epigenetic lncRNA

landscape in each cancer type, which has successfully generated a patient-centric matrix for PCGs in glioblastoma using an Infinium

HumanMethylation27 microarray. We adapted the strategy to accommodate for the lncRNA genes and the HumanMethylation450

microarray. Specifically, we first identified lncRNA and HM450 probe pairs in which the probe located at the lncRNA’s promoter

region as described previously. Then Spearman correlation coefficients (Rho) between the methylation alteration and gene expres-

sion for each lncRNA and probe pair were calculated for each cancer type. The probe with highest coefficient was selected for the

lncRNA if multiple probes annotated to same gene promoter to capture the most variable and correlated probe for each gene. This
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procedure reduced the number of CpG probes from N:1 to 1:1. Next, we assigned discrete categories based on the Spearman cor-

relation coefficient according to the following criteria:

1. Strongly negatively correlated (SNC) when the rho value was less than -0.5;

2. Weakly negatively correlated (WNC) when the rho value was between -0.5 and -0.25;

3. No negative correlation (NNC) when the rho value was greater than -0.25.

Next, we assigned samples to either the 30th (T30 or N30) or 70th (T70 or N70) percentile based on the observed beta value across

tumor (T) and normal (N) samples. For a cancer typewith less than 30 normal samples, we randomly selected 24 normal samples from

each of the three different normal tissues (72 samples in total). The three different normal tissues selected for this analysis were gener-

ated by TCGA for breast (BRCA), kidney (KIRC) and lung (LUSC) tumor studies. We finally scored each lncRNA gene per cancer type

per tissue type (tumor and normal) according to the following rules:

1.If percentile 70 < 0.25, we score it as CUN or CUT (constitutively unmethylated in normal or tumor tissue);

2.If percentile 20 > 0.75, we score it as CMN or CMT (constitutively methylated in normal or tumor tissue);

3.If percentile 20 > 0.25 and percentile 70 < 0.75, we score it as IMN or IMT (intermediately methylated in normal or tumor tissue);

4.If it did not fall into any of the above categories, it was scored VMN or VMT (variably methylated in normal or tumor tissue).

Next, we assigned a ‘call’ and a confidence ‘score’ for each of the possible combinations (48) [3 (SNC,WNC, NNC) x 4 (CUN, CMN,

VMN, IMN) x 4 (CUT, CMT, VMT, IMT)] per platform, as shown in Table S5. The methylation calls are as follows:

EA: Epigenetically activated

ES: Epigenetically silenced

UC: No Change

Methylation class confidence scores varied from EAH (epigenetic activation with high confidence), EAL (epigenetic activation with

low confidence), NC (no change), ESL (epigenetic silencing with low confidence) and ESH (epigenetic silencing with high confidence)

here. In this way, we generated aMethylation Patient-Centric Table of DNAmethylation calls for each sample per lncRNA in 20 cancer

types, and calculated the percentage of four types’ methylation status for each lncRNA in each cancer type.

The lncRNAs were ranked by summarized weighted alteration percentages among all the cancer types. Specifically, we give the

EAH percentage with weight 2, EAL percentage with weight 1, UC percentage with weight 0, ESL percentage with weight -1, and ESH

percentage with weight -2. The summarized weighted percentages of each lncRNA was used as a rank score. Generally, lncRNAs

with consistent EA status in multiple cancer types would get a higher score, and the lncRNAs with consistent ES status in multiple

cancer types would show a lower score.

Gene Set Enrichment Analysis (GSEA)
To interpret the function of regulated genes after EPIC1 siRNA treatment, GSEA (version 2.2.0) (Subramanian et al., 2005) was per-

formed using the 50 cancer hallmark gene sets and a gene log2-fold change. To identify the pathways that are correlated with EPIC1

expression in tumor samples, we performed a similar GSEA for each cancer type in TCGA dataset. In this analysis, GSEA was per-

formed on the ranked PCG list based on the Spearmen’s correlation coefficient with EPIC1 expression.

RNA-seq Data Analysis
We developed a STAR-RSEM pipeline, which was revised from the ENCODE RNA-seq analysis pipeline. We used this pipeline to

profile TCGA breast cancer and CCLE breast cancer cell line RNA-seq data, and the RNA-seq data of MCF-7 cells after EPIC1

knockdown. To transfer the bam file to fastq, we used Picard-tools SamToFastq module. FastQC was used to check the sequencing

quality. The RNA-seq data can be downloaded from GEO (GSE98538).

Association Analysis between lncRNA Epigenetic Landscape and Protein-Coding Gene Alteration
Somatic mutations and copy number alterations in 32 cancer types were obtained from TCGA Pan-Cancer project (http://

cancergenome.nih.gov/tcga/). The somatic mutations were identified via the MC3 algorithm. The copy number alterations were

called using the GISTIC algorithm. An alteration profile of 32 cancer types was constructed. The columns of the alteration profile

represent the samples, and the rows represent the tumor genes. If a gene was detected with alterations (non-synonymous somatic

mutation or SCNA) in a sample, we set the profile to 1. Otherwise, the profile was set to 0.

For each PCG-lncRNA pair (denoted asGi and Li), we calculated the probability P(Gi, Li) of observing at least the number of samples

that simultaneously contain alterations in both G1 and Li at random according to Equation 1:

PðG1 ;LiÞ = 1�
Xa�1

k = 0

�
a+b
k

��
c+d

a+ c� k

�
�

n
a+ c

� (Equation 1)

where n is the total number of samples, a is the number of samples with alterations in both genes, b is the number of samples with

alterations only inG1, c is the number of samples with alterations only in Li, and d is the number of samples without alterations in either
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gene. The ‘‘hypergeometric test’’ p value was subjected to a Benjamini and Hochberg correction for multiple tests, and gene pairs

with a FDR less than 0.05 were included in the following analysis.

Statistical and Clustering Analysis
Student’s t-test, analysis of variance, chi-square, Wilcoxon rank-sum test, Fisher’s exact test, Kaplan-Meier estimate, and Mantel-

Cox survival analyses were performed using R 2.10.0. Significance was defined as p < 0.05. Benjamini-Hochberg multiple testing

correction (Benjamini and Hochberg, 1995) was used to estimate the FDR when multiple testing correction was applied.

Integrating ChIP-Seq and RNA-Seq Data to Identify and Validate EPIC1-MYC Axis Target Gene
The genome-wide MYC protein binding sites were identified by applying Cistrome algorithm (Mei et al., 2017) on two biological rep-

licates of MYC ChIP-seq assays of MCF-7 cells (Lee et al., 2012). We identified MYC targets that regulated by EPIC1 based on two

criteria: (1) at least one MYC binding peak falls within the TSS-proximal region (from 3 kb upstream to 500 bp downstream) of the

gene; and (2) the gene is differentially expressed between the siEPIC1 and control MCF-7 cells. The top targets of EPIC1-MYC

axis were selected based on their significance of MYC binding signal, differential expression after EPIC1 knockdown, and their roles

in cell proliferation/cycle. For each target, primers were designed to target the MYC binding region, and detailed primer sequences

are listed in Table S5. ChIP-qPCR was further performed to demonstrate whether EPIC1 knockdown decreases the recruitment of

MYC to its target promoter sites.

Antibodies
The following antibodies were used for immunoblotting: rabbit anti-SNRP70 (Abcam, #ab83306), rabbit anti-GAPDH (Santa Cruz,

#sc-25778), rabbit anti-MYC (Cell Signaling, #13987), rabbit anti-p21 (Cell Signaling, #2947), rabbit anti-CDC20 (Cell Signaling,

#14866), rabbit anti-FLAG (Cell Signaling, #14793), rabbit anti-CDC45 (Cell Signaling, #11881), rabbit anti-MAX (Novus, #NBP1-

49963), mouse anti-Cyclin A2 (Santa Cruz, #sc-596), and mouse anti-b-actin (Sigma, #A5441). The following antibodies were

used for co-immunoprecipitation (Co-IP), RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) analysis: rabbit

anti-MYC (Santa Cruz, #sc-789), rabbit anti-MAX (Santa Cruz, #sc-764), rabbit anti-MYC (Cell Signaling, #9402), and normal rabbit

IgG (Cell Signaling, #2729) as a negative control, and anti-FLAG M2 affinity gel (Sigma, #A2220).

Cell Fractionation, Cytoplasmic/Nuclear RNA Isolation
MCF-7, Hs578T, and T-47D cells were subjected to cytoplasmic and nuclear fractionation using a PARISTM kit (ThermoFisher,

#AM1921), and total RNA was isolated from each fraction following the recommended protocol.

RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Assays
Total RNA was isolated from cultured cells using an RNeasy Mini kit (Qiagen, #74104) according to the manufacturer’s instructions.

cDNAs were synthesized from 0.5 mg of total RNA using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

#4368813). Real-time PCR was performed with Power SYBR Green PCR Master Mix (Applied Biosystems, #4367659) on a

QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). Relative gene expression was determined by DDCt normalized

to GAPDH. The primers used are listed in Table S5.

EPIC1 RNA Copy Number Analysis
Total RNA was isolated from 1 x 106 cells using an RNeasy Mini kit. The full-length of EPIC1 RNA was in vitro transcribed with Ribo-

nucleotide solution set (NEB, #N0450) and T7 RNA polymerase (Roche, #10881775001) using the PCR products as a template,

treated with RNase-free DNase I (Promega, #M198A), and then isolated with the RNeasy Mini kit. cDNA was synthesized using

1mg of the total RNA or full-length of EPIC1 RNA. Serial ten-fold dilutions (102 to 109 molecules per ml) of cDNA from in vitro-tran-

scribed EPIC1 RNA were used as a reference molecule for the standard curve calculation. Real-time PCR was performed as above.

Cloning, shRNA Construction, and Lentiviral Transduction
Full-length of EPIC1 was identified and amplified from total RNAs of MCF-7 / T-47D cells by 5’RACE and 3’-RACE using FirstChoice

RLM-RACE Kit (ThermoFisher, #AM1700). To construct retroviral EPIC1 expression plasmids, PCR products containing the CMV-

zsGreen1 portion of pLncEXP (Addgene plasmid # 64865) were inserted into a pBABE puro vector (Addgene, #1764), and the

resulting construct was named as pBABE-lnc. Then full-length and truncated mutants of EPIC1 were cloned into pBABE-lnc with

AgeI andXhoI enzymes or cloned into pCDH-CMV-MCS-EF1-Puro (SystemBiosciences, #CD510B-1) with XbaI andEcoRI enzymes.

Full-length of Flag-tagged or HA-tagged MYC expression vectors were generated using a human MYC cDNA Clone (OriGene,

#SC112715) as a DNA template. Full-length of HA-tagged MAX expression vector was generated using cDNA from MCF-7 cells

as a template. The truncated or deletion mutants and LNA-resistant EPIC1 expression vectors were constructed by using

QuickChange II XL Site-Direct Mutagenesis Kit (Agilent Technologies, #200522). All constructs were confirmed by DNA sequencing

at Genomics Research Core, University of Pittsburgh.

To construct stable EPIC1-expressing cells, pBABE-lnc and lnc-EPIC1 plasmids were transfected into Phoenix cells to produce

retrovirus, and viruses were collected 48 hr post-transfection. MCF-7 cells were infected for 24 hr with the retroviruses and selected

with puromycin to establish stable EPIC1-expressing cells. Detailed sequences of primers used for cloning are listed in Table S5.
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EPIC1 knockdown constructs were cloned by inserting oligos into a pLKO.1 TRC cloning vector (Addgene, #10878). The oligo se-

quences are listed in Table S5. To produce lentiviral particles, HEK 293T cells were seeded into one 6-cm Petri dish in DMEM with

10% FBS without antibiotics and incubated overnight to reach approximately 80% confluence before transfection. Transfection was

performed using Lipofectamine 2000 Transfection Reagent according to the recommended protocol. Then, 3 mg of pLKO.1 shControl

(shCtrl) or pLKO.1 shEPIC1 plasmid, 2.25 mg of psPAX2 (Addgene, #12260), and 0.75 mg of pVSV-G (Addgene, #8454) were used for

each 6-cm petri dish. After transfection for 6 hr, the medium was changed with fresh DMEM containing 10% FBS, and the cells were

incubated for another 48 hr. Culture medium containing the lentiviral particles was collected and filtered through a 0.45 mm filter to

remove any remaining cells and debris. Target cells were infected for 24 hr with lentiviral particles in the presence of 8 mg/ml

polybrene and screened with puromycin to establish stable cells.

Promoter Cloning and Reporter Assay
Using genomic DNA fromMCF-7 cells as DNA templates, the promoter region ofCCNA2 ranging from -443 bp to +334 bpwas ampli-

fied by PCR and inserted to pGL3 Basic vector (Promega, #E1751) with NheI and HindIII enzymes, named as CCNA2-Luc, and the

promoter region of EPIC1 ranging from -133 bp to +587 bp were inserted to pGL3 Basic vector with HindIII enzymes, named as

EPIC1-Luc. WWP-Luc (p21/WAF1 promoter) was a gift from Bert Vogelstein (Addgene plasmid #16451). For plasmid methylation

followed by the previous report (DiNardo et al., 2001), briefly, 20 mg of EPIC1-Luc were methylated using Methyltransferase

(M. SssI, NEB, #M0226S) at 37�C for 12 hr, followed by subsequent inactivation of enzyme at 60�C for 20 min. Mock-methylated

mixtures were also performed in the absence of the methylase and S-adenosyl methionine. The methylated and mock-methylated

mixtures were purified using

QIAprep Spin Miniprep Kit (Qiagen, #27106) and the methylation status of the constructs was determined by HpaII digestion and

2% agarose gel eletrophoresis.

Cells were transiently transfected with un-methylated or methylated EPIC1-Luc reporter or a combination of either EPIC1 siRNA,

MYC siRNA, or a negative control siRNAwith CCNA2-Luc or WWP-Luc constructs using LipofectamineTM 2000, and b-Gal was used

as an internal control. After 48 hr, the luciferase and b-Gal activities were detected as described (Niu et al., 2017) in a Wallac 1420

Victor2 Microplate Reader (Perkin Elmer). The luciferase activities were normalized to the b-Gal activities. Data were shown as fold

change over the control group.

Cell Proliferation and Cell Cycle Assay
Cells were seeded at 2,000 cells per well in 96-well culture plates, and MTT assays were performed with a CellTiter 96 Non-Radio-

active Cell Proliferation Assay Kit (Promega, #G4100) following the manufacturer’s guidelines. The absorbance value was measured

at 570 nm using an xMark Microplate Spectrophotometer (Bio-Rad) with a reference wavelength of 630 nm.

For the cell cycle assay, cells were collected, rinsed with PBS, and fixed for a minimum of 2 hr by adding 70% ice-cold ethanol

at -20�C. Cells were then sequentially washed once in PBS and BD Pharmingen stain buffer (BD Biosciences, #554656). Cell pellets

were resuspended in 0.5ml of BD Pharmingen PI/RNase staining buffer (BD Biosciences, #550825) and incubated for 15min at room

temperature (RT), and cells were immediately analyzed using an LSRFORTESSA X-20 flow cytometer (BD Biosciences). The data

were analyzed with FlowJo software.

Soft Agar Colony Formation Assay
For each well, 2 ml of 0.6% NuSieve GTG agarose (Lonza, #50081) in culture medium was plated into 6-well plates as the bottom

layer, and the agarose was allowed to solidify at RT. Then, 1 ml of cell mixture containing 104 cells in culture medium and a final con-

centration of 0.35% agarose was carefully plated on top of the bottom layer. The plates were incubated at 37�C and 5% CO2 until

colonies were formed, and cells were fed with 0.5 ml of cell culture medium every other week. After 2-3 weeks, colonies were stained

using 0.005% crystal violet in 4% paraformaldehyde solution and counted.

RNA Immunoprecipitation (RIP)
RIP was performed as previously described with minor modifications (Tsai et al., 2010). Briefly, cultured cells were collected by tryp-

sinization, washed once with cold PBS, and then treated with 0.3% formaldehyde in PBS for 10 min at 37�C. Then, 1.25 M glycine

dissolved in PBSwas added to a final concentration of 0.125M, and themixture continued to incubate for 5min at RT. The cells were

subsequently washed twice with cold PBS, and the pellets were resuspended in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mMNaCl,

1 mM EDTA, 0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate, 0.5 mM DTT, 1 mM PMSF, and 1 x protease inhibitor cocktail

(Sigma, #P8340)) and incubated on ice for 30minwith shaking. The cleared lysateswere incubated for 4 h at 4�Cwith the correspond-

ing antibodies. Pellets were washed twice in RIPA buffer, four times in 1 M RIPA buffer (50 mM Tris-HCl, pH 7.4, 1 M NaCl, 1 mM

EDTA, 0.1% SDS, 1% NP-40, and 0.5% sodium deoxycholate), and then twice in RIPA buffer. The pellets were resuspended and

treated with RIPA buffer containing proteinase K at 45�C for 45 min. Finally, RNA was isolated with TRIzol reagent.

RNA Pull-Down Assay
Biotin-labeled full-length and truncated fragments of EPIC1 RNA were transcribed in vitrowith a Biotin RNA Labeling Mix Kit (Roche,

#11685597910) and T7 RNA polymerase (Roche, #10881775001) using the PCR products as a template, treated with RNase-free

DNase I (Promega, #M198A), and then isolated with an RNeasy Mini kit. Biotinylated RNA was folded in RNA structure buffer
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(10 mM Tris-HCl pH 7.0, 0.1 M KCl, 10 mMMgCl2) at 90
�C for 2 min, immediately put on ice for another 2 min, and then transferred to

RT for 20 min to allow proper RNA secondary structure formation.

Cells were collected by trypsinization and washed twice with sterilized PBS. Cell pellets were resuspended in 2 ml of pre-chilled

PBS, 2 ml of nuclear isolation buffer (1.28 M sucrose, 40 mM Tris-HCl pH 7.5, 20 mMMgCl2, and 4% Triton X-100) and 6 ml of ster-

ilized DEPC-treated water and incubated on ice for 20 min with frequent vortexing. Nuclei were pelleted by centrifugation at 2,500 g

for 15min, washed once with 1ml of nuclear isolation buffer, resuspended in RIP buffer (150mMKCl, 25mMTris-HCl pH 7.4, 0.5mM

DTT, 0.5% NP-40, 1 mM PMSF, 1 x Superase-in, and 1 x protease inhibitor cocktail), and sheared on ice using a Dounce homoge-

nizer with 15 to 20 strokes. After 1mg of the cleared lysate wasmixed with folded RNA in RIP buffer and incubated for 1 hr at RT, 60 ml

of Dynabeads MyOne Streptavidin C1 magnetic beads (ThermoFisher, #65001) was added to each reaction, and the mixture was

incubated for another 1 hr at RT. Beads were washed five times and boiled in 1 x SDS loading buffer, and the retrieved protein

was analyzed using western blotting.

The in vitro binding assay of biotin-labeled EPIC1 RNA andMYC protein was performed as previously described (Tsai et al., 2010).

Briefly, 0.1 mg of biotinylated RNAwas incubatedwith different amounts of recombinant humanMYCprotein (Abcam, #ab84132) for 1

hr at RT in 200 ml of binding buffer (50mMTris-HCl pH 7.9, 10%glycerol, 100mMKCl, 5mMMgCl2, 10mM b-ME, 0.1%NP-40, 1mM

PMSF, 1 x Superase-in, and 1 x protease inhibitor cocktail). Then, 30 ml of washed streptavidin-conjugated magnetic beads were

added to each reaction, and the mixtures were incubated at RT for 30 min. Beads were washed five times and boiled in 1 x SDS

loading buffer, and the retrieved protein was analyzed using western blotting.

Chromatin Immunoprecipitation (ChIP)
The ChIP assay was performed as previously described (Nelson et al., 2006). Briefly, 1 x 107 cells were cross-linked with a final con-

centration of 1.42% formaldehyde in growth medium for 15 min at RT, and cross-linking was quenched by the addition of glycine to a

final concentration of 125mMand incubation for 5min at RT. Cells were rinsed twice with cold PBS, harvested in IP buffer (50mMpH

7.5 Tris-HCl, 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, and 1% Triton X-100) supplemented with 1 mM PMSF and 1 x protease

inhibitor cocktail and sonicated to shear the chromatin to yield DNA fragment sizes of 0.5 to 1 kb. Samples were cleared by centri-

fuging at 12,000 g for 10 min at 4�C and preincubated for 1 hr with 40 ml of protein A/G agarose beads. A portion of the precleared

samples was used as input DNA. Then, approximately 2 mg of MYC antibody or rabbit normal immunoglobulin (IgG) was added to the

remainder of the samples and incubated for 1 hr at 4�C, 40 ml of protein A/G agarose beads (ThermoFisher, #20421) were added, and

the mixture was incubated for 4 hr at 4�C. Beads were washed six times with cold IP buffer, and DNA was isolated with 10% Chelex

following the suggested protocol; the total input DNA was also isolated. Quantification was performed using real-time PCR with

SYBR Green Master Mix. Control IgG and input DNA signal values were used to normalize the values from the MYC ChIP to target

genes. The primers for target genes and the negative control are listed in Table S5.

Co-Immunoprecipitation (Co-IP), Protein Isolation and Western Blotting
Co-IP was performed as following, briefly, cells were collected and lysed in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mMNaCl, 1 mM

EDT, 1% Triton X-100, PMSF freshly added to a final concentration of 1mM, and 1x protease inhibitor cocktail). After quantification

using a BCA protein assay kit (ThermoFisher, #23225), 1 mg of total protein were used for Co-IP and incubated for overnight with 2 mg

of anti-MYC, anti-MAX antibodies, and normal rabbit IgG as a negative IP control, respectively. The mixtures were incubated for

another 2-4 hr with protein A/G agarose beads, and then beads were washed at least 4 times, and treated and boiled for 10 min

with 1x SDS sample buffer (Bio-Rad, #161-0737).

Cell lysates were also treated with equal volume of 2x SDS sample buffer and resolved by SDS-PAGE under denaturing conditions

and transferred onto PVDF membranes (Bio-Rad, #162-0177). The membranes were blocked with 5% non-fat milk (LabScientific,

#M0841) in 1x PBST at RT for 2 hr and incubated with primary antibody overnight at 4�C, followed by incubation with horseradish

peroxidase-conjugated secondary antibodies for 1 hr at RT. Specific bands were visualized with enhanced chemiluminescence

(ECL) substrate (ThermoFisher, #32106) and exposed onto films with an AX 700LE film processor (ALPHATEK).

DATA AND SOFTWARE AVAILABILITY

The RNA-seq datasets for gene expression in MCF-7 cells after siRNA-mediated knockdown of EPIC1 (accession no. GSE98538),

DNA methylation datasets of breast cancer cells (accession no. GSE57342 and GSE44837), and gene expression profile of breast

cancer patients (accession no. GSE20711, GSE21653, GSE17907, GSE20685, GSE16446, and GSE19615), are available at

GEO: https://www.ncbi.nlm.nih.gov/geo/.
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